Vol 6, No 2 (2015) > Electrical, Electronics and Computer Engineering >

Detection of Exudates on Color Fundus Images using Texture Based Feature Extraction

Hanung Adi Nugroho, KZ Widhia Oktoeberza, Teguh Bharata Adji, Faisal Najamuddin


Abstract: World Health Organisation (WHO) has predicted
300 million peoples will suffer of diabetic in 2025.  Long-term diabetics can lead to diabetic
retinopathy that can cause blindness in developing countries.  One of the abnormalities of diabetic
retinopathy is exudate.  Exudates are classified
into two categories, i.e. hard and soft exudates.  This paper proposes feature extraction based
on texture for distinguishing
hard, soft and non-exudates.  The green
channel of the original images is enhanced by CLAHE and followed by
median filtering and thresholding in red channel to detect and remove the optic
disc.  The enhanced image is segmented
based on clustering to obtain the region of interest of exudates.  Feature extraction based on texture is conducted by using GLCM and
lacunarity.  Results show that
classification based on NaïveBayes algorithm achieves accuracy, specificity and
sensitivity of 92.13%, 96% and 87.18%, respectively.
Keywords: Fundus images, Exudates, Texture feature, GLCM, Lacunarity,

Full PDF Download


Acharya, U. R., Ng, E. Y. K., Tan, J. H., Sree, S. V., & Ng, K. H. (2012). An integrated index for the identification of diabetic retinopathy stages using texture parameters. Journal of Medical Systems, 36(3), 2011-2020.

Amel, F., Mohammed, M., & Abdelhafid, B. (2012). Improvement of the Hard Exudates Detection Method Used For Computer- Aided Diagnosis of Diabetic Retinopathy. International Journal of Image, Graphics and Signal Processing, 4, 19-27. doi: 10.5815/ijigsp.2012.04.03

Bin Mansoor, A., Khan, Z., Khan, A., & Khan, S. A. (2008, 23-24 Dec. 2008). Enhancement of exudates for the diagnosis of diabetic retinopathy using Fuzzy Morphology. Paper presented at the Multitopic Conference, 2008. INMIC 2008. IEEE International.

Chen, H.-T., Wang, C.-M., Chan, Y.-K., Yang-Mao, S.-F., Chen, Y.-F., & Lin, S.-F. (2013). Statistics-Based Initial Contour Detection of Optic Disc on a Retinal Fundus Image Using Active Contour Model. Journal of Medical and Biological Engineering, 33(4), 388-393. doi: 10.5405/jmbe.1243

Das, P., Beura, S. K., & Dash, R. K. (2014). A Review on Retinal Image Analysis for the Detection of Diabetic Retinopathy. International Conference on Recent Innovations in Engineering & Technology, 42-47.

Eadgahi, M. G. F., & Pourreza, H. (2012, 18-19 October 2012). Localization of hard exudates in retinal fundus image by mathematical morphology operations. Paper presented at the Computer and Knowledge Engineering (ICCKE), 2012 2nd International eConference on.

Fadzil, M. A., Nugroho, H. A., Nugroho, H., & Iznita, I. L. (2009). Contrast enhancement of retinal vasculature in digital fundus image. Paper presented at the Digital Image Processing, 2009 International Conference on.

García, M., Sánchez, C. I., Poza, J., López, M. I., & Hornero, R. (2009). Detection of hard exudates in retinal images using a radial basis function classifier. Annals of biomedical engineering, 37(7), 1448-1463. doi: 10.1007/s10439-009-9707-0

Garcia, M., Valverde, C., Lopez, M. I., Poza, J., & Hornero, R. (2013, 3-7 July 2013). Comparison of logistic regression and neural network classifiers in the detection of hard exudates in retinal images. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE.

Gogula, S. v., Divakar, C. H., Satyanarayana, C. H., & Rao, A. A. (2014). A diabetic retinopathy detection method using an improved pillar K-means algorithm. Bioinformation, 10(1), 28-32. doi: 10.6026/97320630010028

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10-18.

Hani, A. F. M., Nugroho, H., Nugroho, H. A., Izhar, L. I., Ngah, N. F., George, T. M., . . . Pin, G. P. (2012). Toward a Fully Automated DR Grading System. Paper presented at the 5th European Conference of the International Federation for Medical and Biological Engineering.

Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on(6), 610-621.

Jain, A. K. (1989). Fundamentals of digital image processing: Prentice-Hall, Inc.

Kadir, A., & Susanto, A. (2012). Pengolahan Citra Teori dan Aplikasi (1 ed.). Yogyakarta: ANDI.

Kande, G. B., Subbaiah, P. V., & Savithri, T. S. (2009). Feature Extraction in Digital Fundus Images. Journal of Medical and Biological Engineering, 29(3), 122-130.

Kanth, S., Jaiswal, A., & Kakkar, M. (2013, 8-10 Aug.). Identification of different stages of Diabetic Retinopathy using artificial neural network. Paper presented at the Contemporary Computing (IC3), 2013 Sixth International Conference on.

Karthick, D. K. S. S., & Priyadharsini, A. (2014). A Survey on Hard Exudates Detection and Segmentation. International Journal of Scientific Engineering and Technology, 3(2), 154-158.

Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Raninen, A., . . . Uusitalo, H. (2007 ). DIARETDB1 - Standard Diabetic Retinopathy Database Calibration level 1.

Mookiah, M. R. K., Acharya, U. R., Chua, C. K., Lim, C. M., Ng, E. Y. K., & Laude, A. (2013). Computer-aided diagnosis of diabetic retinopathy: A review. Computers in Biology and Medicine, 43(12), 2136-2155. doi: http://dx.doi.org/10.1016/j.compbiomed.2013.10.007

Paranjpe, M. J., & Kakatkar, M. (2014). Review of Method for Diabetic Retinopathy Detection and Severity Classification. International Journal of Research in Engineering and Technology, 03(03), 619-624.

Ponnaiah, G. F. M., & Baboo, C. D. S. S. (2013). Automatic Optic Disc Detection and Removal of False Exudates for Improving Retinopathy Classification Accuracy. International Journal of Scientific and Research Publications, 3(3), 1-7.

Rashid, S., & Shagufta. (2013). Computerized Exudate Detection in Fundus Images Using Statistical Feature based Fuzzy C-mean Clustering. International Journal of Computing and Digital Systems, 2(3), 135-145.

Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. Encyclopedia of Database Systems, 532-538.

Sánchez, C. I., Hornero, R., López, M. I., Aboy, M., Poza, J., & Abásolo, D. (2008). A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis. Medical Engineering & Physics, 30(3), 350-357. doi: http://dx.doi.org/10.1016/j.medengphy.2007.04.010

SC, P. K., Devaraj, M. D., & Manisha. (2013). Automatic Exudate Detection For The Diagnosis Of Diabetic Retinopathy. International Journal Of Innovative Research & Studies, 2(5), 658-669.

Somasundaram, A., & Prabhu, J. (2013). Detection of Exudates for the Diagnosis of Diabetic retinopathy. International Journal of Innovation and Applied Studies, 3(1), 116-120.

Yazid, H., Arof, H., & Mohd Isa, H. (2012). Exudates segmentation using inverse surface adaptive thresholding. Measurement, 45(6), 1599-1608. doi: http://dx.doi.org/10.1016/j.measurement.2012.02.016