Vol 7, No 8 (2016) > Metalurgy and Material Engineering >

Non-sulfurization Single Solution Approach to Synthesize CZTS Thin Films

Badrul Munir, Bayu Eko Prastyo, Ersan Yudhapratama Muslih, Dwi Marta Nurjaya

 

Abstract: The growth and crystallization
processes of the Cu2ZnSnS4 (CZTS) phase typically rely on
high-temperature sulfurization, which involves a harmful chalcogen-containing
atmosphere. Together with the use of high-toxicity solvents, these processes
could hinder the widespread adoption of this technology in the mass production
of CZTS semiconductors for solar cell application. Thus, we studied the
formation of CZTS films from ethanol-based precursors without the sulfurization
step, fully employing the non-toxic solvent and avoiding the environmentally
harmful sulfur-containing atmosphere. The certain addition of
2-mercaptopropionic acid led to the formation of a clear and stable
sulfur-containing precursor. The precursors were successfully deposited onto
soda lime glass by employing
spin coater. CZTS crystallinity in the identified XRD patterns was vanishingly
small in the case of eliminating the sulfurization process. Moreover, the
carbon concentration and grain size of the resulting films were controlled by
changing the time period of drying treatment during film fabrication. A drying
time of 120
minutes, which demonstrated a CZTS grain size of ± 1 µm with a direct optical energy gap around 1.4 eV, was confirmed as the ideal
condition. These results may provide a useful route toward environment-friendly
strategies for the production of a CZTS semiconductor that is compatible with
the absorber application in thin-film
solar cells.
Keywords: Cu2ZnSnS4 semiconductor; Drying treatment; Sulfurization; Sulfur-containing precursor; Thin-film solar cells

Full PDF Download

References


Abou-Ras, D., Caballero, R., Kaufman, C.A., Nichterwitz, M., Sakurai, K., Schorr, S., Unold, T., Schock, H.W., 2008. Impact of the Ga Concentration on the Microstructure of CuIn1-xGaxSe2. Physica Status Solidi-Rapid Research Letters, Volume 2(3), pp. 135–137

Choubrac, L., Lafond, A., Guillot-Deudon, C., Moëlo, Y., Jobic, S., 2012. Structure Flexibility of the Cu2ZnSnS4 Absorber in Low-cost Photovoltaic Cells: From the Stoichiometric to the Copper-poor Compounds. Inorganic Chemistry, Volume 51(6), pp. 3346−3348

Gessert, T.A., Wei, S.-H., Ma, J., Albin, D.S., Dhere, R.G., Duenow, J.N., Kuciauskas, D., Kanevce, A., Barnes, T.M., Burst, J.M., Rance, W.L., Reese, M.O., Moutinho, H.R., 2013. Research Strategies toward Improving Thin-film CdTe Photovoltaic Devices Beyond 20% Conversion Efficiency. Solar Energy Materials and Solar Cells, Volume 119, pp. 149–155

Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., 2013. Solar Cell Efficiency Tables (Version 41). Progress in Photovoltaics: Research and Applications, Volume 21(1), pp. 1–11

Hiroi, H., Kim, J., Kuwahara, M., Todorov, T.K., Nair, D., Hopstaken, M., Zhu, Y., Gunawan, O., Mitzi, D.B., Sugimoto, H., 2014. Over 12% Efficiency Cu2ZnSn(SeS)4 Solar Cell via Hybrid Buffer Layer. In: Proceedings of the 40th IEEE Photovoltaic Specialists Conference, At Denver, Colorado, USA, Volume 30-32, pp. 30–32

Jackson, P., Hariskos, D., Wuerz, R., Kiowski, O., Bauer, A., Friedlmeier, T.M., Powalla, M., 2014. Properties of Cu(In,Ga)Se2 with New Record Efficiencies up to 21.7%. Physica Status Solidi-Rapid Research Letters, Volume 9(1), pp. 28−31

Larramona, G., Bourdais, S., Jacob, A., Choné, C., Muto, T., Cuccaro, Y., Delatouche, B., Moisan, C., Péré, D., Dennler, G., 2014. 8.6% Efficient CZTSSe Solar Cells Sprayed from Water−Ethanol CZTS Colloidal Solutions. Journal of Physical Chemistry Letters, Volume 5(21), pp. 3763−3767

Lee, Y.S., Gershon, T., Gunawan, O., Todorov, T.K., Gokmen, T., Virgus, Y., Guha, S., 2015. Cu2ZnSnSe4 Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length. Advanced Energy Materials, Volume 5(7), pp. 14013721−14013724

Liu, F., Zeng, F., Song, N., Jiang, L., Han, Z., Su, Z., Yan, C., Wen, X., Hao, X., Liu, Y., 2015. Kesterite Cu2ZnSn(S,Se)4 Solar Cells with Beyond 8% Efficiency by a Sol-gel and Selenization Process. ACS Applied Materials & Interfaces, Volume 7(26), pp. 14376–14383

Mitzi, D.B., Gunawan, O., Todorov, T.K., Wang, K., Guha, S., 2011. The Path towards a High-performance Solution-processed Kesterite Solar Cell. Solar Energy Materials and Solar Cells, Volume 95(6), pp. 1421–1436

Parida, B., Iniyan, S., Goic, R., 2011. A Review of Solar Photovoltaic Technologies. Renewable and Sustainable Energy Reviews, Volume 15(3), pp. 1625–1636

Persson, C., 2010. Electronic and Optical Properties of Cu2ZnSnS4 and Cu2ZnSnSe4. Journal of Applied Physics, Volume 107(5), pp. 0537101−0537108

Tan, J.M.R., Lee, Y.H., Pedireddy, S., Baikie, T., Ling, W.Y., Wong, L.H., 2014. Understanding the Synthetic Pathway of a Single-Phase Quarternary Semiconductor Using Surface-Enhanced Raman Scattering: A Case of Wurtzite Cu2ZnSnS4 Nanoparticles. Journal of the American Chemical Society, Volume 136(18), pp. 6684−6692

Thimsen, E., Riha, S.C., Baryshev, S.V., Martinson, A.B.F., Elam, J.W., Pellin, M.J.., 2012. Atomic Layer Deposition of the Quaternary Chalcogenide Cu2ZnSnS4. Chemistry of Materials, Volume 24(16), pp. 3188−3196

Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y., Mitzi, D.B, 2014. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Advanced Energy Materials, Volume 4(7), pp. 13014651−13014655