Vol 7, No 5 (2016) > Mechanical Engineering >

Bubble Dynamics of Batik Dyeing Waste Separation using Flotation

Warjito Warjito, Nurrohman Nurrohman


Abstract: Batik waste can increase water characteristics, such as turbidity, color
and total suspended solids (TSS). Thus, an efficient technique for separating
Batik from the liquid to decrease these characteristics is needed. The aim of
the current study was to understand the results of flotation using electrolysis
and to investigate the bubble characteristics that influence the results of the
flotation of Batik waste. Flotation studies have been conducted using
electrolysis to produce bubbles to separate batik synthetic dye from the
liquid. Research conducted with 316L stainless steel electrodes, inside a 100
cm tall acrylic pipe with an inner diameter of 8.4 cm and a voltage variation
of 10, 15 and 20 V. Batik waste was mixed with distilled water. Commercial alum
powder [aluminum sulfate, Al2(SO4)3.14H2O,
that is 17% Al2O3] as the reagent was added to coagulate
Batik waste in a ratio of 1 gram per 10 ml of Batik waste. The results showed
that flotation of Batik waste can be used to separate Batik waste with the
addition of alum. Alum was shown to be capable of acting as a collector in this
type of waste separation. The results showed that flotation using electrolysis
could be an effective method for reducing turbidity, color and TSS.
Keywords: Batik waste; Electroflotation; Electrolysis; Flotation; Microbubble

Full PDF Download


Al Shakarji, R., He, Y., Gregory, S., 2011. The Sizing of Oxygen Bubbles in Copper Electrowinning. Hydrometallurgy, Volume 109, pp. 168–174

Baghban, E., Mehrabani-Zeinabad, A., Mohed, A., 2014. The Effects of Operational Parameters on the Electrochemical Removal of Cadmium Ion from Dilute Aqueous Solutions. Hydrometallurgy, Volume 149, pp. 97–105

Basuki, 2011. Penyisihan Zat Organik pada Air Limbah Industri Batik dengan Fotokatalisis TiO2. Surabaya: Environmental Engineering, Sepuluh November Institute of Technology [in Bahasa]

Budhijanto, W., Deendarlianto, Kristiyani, H., Satriawan, D., 2015. Enhancement of Aerobic Wastewater Treatment by the Application of Attached Growth Microorganisms and Microbubble Generator. International Journal of Technology, Volume 6(7), pp. 1101–1109

Casqueira, R.G., Torem, M.L., Koler, H.M., 2006. The Removal of Zinc from Liquid Streams by Electroflotation. Minerals Engineering, Volume 19(13), 1388–1392

Choi, J., Shim, S., Yoon, J., 2013. Design and Operating Parameters Affecting an Electrochlorination System. Journal of Industrial and Engineering Chemistry, Volume 19(1), pp. 215–219

Clift, M., Grace, R., Weber, J.R., 1978. Bubbles, Drops and Particles. Academic Press, New York, pp. 169–202

Coward, T., Lee, J.G.M., Caldwell, G.S., 2015. The Effect of Bubble Size on the Efficiency and Economics of Harvesting Microalgae by Foam Flotation. Journal of Applied Phycology, Volume 27(2), pp. 733–742

da Cruz, S.G., Dutra, A.J.B., Monte, M.B.M., 2016. The Influence of Some Parameters on Bubble Average Diameter in an Electroflotation Cell by Laser Diffraction Method. Journal of Environmental Chemical Engineering, In Press, Corrected Proof. Available online 17 May 2016

da Mota, I.d-O., de Castro, J.A., Casqueira, R.d-G., de Oliveira Junior, A.G., 2015. Study of Electroflotation Method for Treatment of Wastewater from Washing Soil Contaminated by Heavy Metals. Journal of Materials Research and Technology, Volume 4(2), pp. 109–113

Darmawanti, T., 2009. Pengolahan Limbah Cair Industri Batik dengan Metoda Elektrokoagulasi Menggunakan Besi Bekas sebagai Elektroda. Undergraduate thesis. Semarang: Chemistry Department, Diponegoro University [in Bahasa]

Deendarlianto, Wiratni, Tontowi, A.E., Indarto, Iriawan, A.G.W., 2015. The Implementation of a Developed Microbubble Generator on the Aerobic Wastewater Treatment. International Journal of Technology, Volume 6(6), pp. 924–930

Fan, L.-S., Tsuchiya, K., 1990. Bubble Wake Dynamics in Liquids and Liquid-solid Dispersions. Butterworth-Heinmann, Boston

Haapala, A., Honkanen, M., Liimatainen, H., Stoor, T., Niinimaki, J., 2010. Hydrodynamic Drag and Rise Velocity of Microbubbles in Papermaking Process Waters. Chemical Engineering Journal, Volume 162(3), pp. 956–964

Hanotu, J., Bandulasena, H.C.H., Zimmerman, W.B., (2012), Microflotation performance for algal separation. Department of Chemical and Biological Engineering, University of Sheffield

Hashaikeh, R., Laila, B.S., Kochkodan, V., Hilal, N., 2014. A Novel in Situ Membrane Cleaning Method using Periodic Electrolysis. Journal of Membrane Science, Volume 471, pp. 149–154

Huang, Z., Legendre, D., Guiraud, P., 2011. A New Experimental Method for Determining Particle Capture Efficiency in Flotation. Chemical Engineering Science, Volume 66(5), pp. 982–997

Kurniawan, T.A., Chan, G.Y.S., Lo, W.-H., Babel, S., 2006. Physico-chemical Treatment Techniques of Wastewater Laden with Heavy Metals. Chemical Engineering Journal, Volume 118(1-2), pp. 83–98

Kyzas, G.Z., Matis K.A., 2016. Electroflotation Process: A Review. Journal of Molecular Liquids, Volume 220, pp. 657–664

Lobo, F.L., Wang, H., Huggins, T., Rosenblum, J., Linden, K.G., Ren, Z.J., 2016. Low-energy Hydraulic Fracturing Wastewater Treatment via AC Powered Electrocoagulation with Biochar. Journal of Hazardous Materials, Volume 309, pp. 180–184

Manica, R., Hendrix, M.H.W., Gupta, R., Klaseboer, E., Ohl, C.-D., Chan, D.Y.C., 2014. Modelling Bubble Rise and Interaction with a Glass Surface. Applied Mathematical Modeling, Volume 38(17-18), pp. 4249–4261

Matis, K.A., 1995. Flotation Science and Engineering, CRC Press, Inc., New York

Mei, R., Klausner, J.F., Lawrence, C.J., 1994. A Note on the History Force on a Spherical Bubble at Finite Reynolds Number. Physics Fluids, Volume 6(1), pp. 418–420

Mouli, P.C., Mohan, S.V., Reddy, S.J., 2004. Electrochemical Processes for the Remediation of Wastewater and Contaminated Soil: Emerging Technology. Journal of Scientific & Industrial Research, Volume 63(1), pp. 11–19

Nanseu-Njiki, C.P., Tchamango, S.R., Ngom, P.C., Darchen, A., Ngameni, E., 2009. Mercury(II) Removal from Water by Electrocoagulation using Aluminium and Iron Electrodes. Journal of Hazardous Materials, Volume 168(2-3), pp. 1430–1436

Nurrohman, 2012. Analisis Karakteristik Small Bubble pada Larutan Tawas. Undergraduate thesis. Depok: Mechanical Engineering Department, University of Indonesia [in Bahasa]

Rahmawati, N.I., 2009. Pengolahan Limbah Cair Industri Batik dengan Metoda Elektrokoagulasi menggunakan Seng sebagai Elektroda. Undergraduate thesis. Semarang: Chemistry Department, Diponegoro University [in Bahasa]

Riyanto, 2011. Penemuan Teknik Baru untuk Pengolahan Limbah Batik. Islamic University of Indonesia, Yogyakarta [in Bahasa]

Saksono, N., Ariawan, B., Bismo, S., 2012. Hydrogen Production System using Non-thermal Plasma Electrolysis in Glycerol-KOH Solution. International Journal of Tehcnology, Volume 3(1), pp. 8–15

Sarkar, M.S.K.A., Evans, G.M., Donne, S.W., 2010. Bubble Size Measurement in Electroflotation. Minerals Engineering, Volume 23(11-13), pp. 1058–1065

Setyaningsih, H., 1995. Pengolahan Limbah Batik dengan Proses Kimia dan Adsorpsi Karbon Aktif. Master Thesis. Jakarta: Graduate Program, University of Indonesia [in Bahasa]

Shakir, I.K., Hussein, B.I., 2009. Lead Removal from Industrial Wastewater by Electrocoagulation Process. Iraqi Journal of Chemical and Petroleum Engineering, Volume 10(2), pp. 35–42