Vol 7, No 6 (2016) > Electrical, Electronics and Computer Engineering >

Design and Optimization of Highly Sensitive Photonic Crystal Fiber with Low Confinement Loss for Ethanol Detection

Md. Faizul Huq Arif, Sayed Asaduzzaman, Md. Jaminul Haque Biddut, Kawsar Ahmed


Abstract: In this paper, two highly
sensitive photonic crystal fiber (PCF) structures with microstructure core and cladding
have been demonstrated for Ethanol sensing. The
microstructure core of both proposed
PCFs is designed with supplementary holes in an octagonal formation. We have investigated the
relative sensitivity and the confinement loss of the proposed PCF structures
employing a full
vectorial finite element method (FEM). The proposed PCFs work at a wide
transmission band covering 0.8 µm to 2 µm and exhibit high sensitivity and low
confinement loss simultaneously. The numerical analysis shows that the circular shape of air holes in the first ring is a more
salient attribute for
increasing sensitivity and the presence of the square shape of air holes in the first ring shows
better performance to reduce confinement loss.
Keywords: Confinement loss; Ethanol sensor; Finite Element Method (FEM); Photonic Crystal Fiber (PCF); Sensitivity

Full PDF Download


Ademgil, H., 2014. Highly Sensitive Octagonal Photonic Crystal Fiber based Sensor. Optik-International Journal for Light and Electron Optics, Volume 125(20), pp. 6274–6278

Arif, M.F.H., Ahmed, K., Asaduzzaman, S., Azad, M.A.K., 2016. Design and Optimization of Photonic Crystal Fiber for Liquid Sensing Applications. Photonic Sensors, Volume 6(3), pp. 279–288

Asaduzzaman, S., Ahmed, K., Arif, M.F.H., Morshed, M., 2015. Application of Microarray-Core based Modified Photonic Crystal Fiber in Chemical Sensing. In: Proceedings of the International Conference on Electrical and Electronic Engineering (ICEEE), Rajshahi, 04-06 November 2015, Bangladesh

Balaji, T., El‐Safty, S.A., Matsunaga, H., Hanaoka, T., Mizukami, F., 2006. Optical Sensors based on Nanostructured Cage Materials for the Detection of Toxic Metal Ions. Angewandte Chemie, Volume 118(43), pp. 7360–7366

Birks, T.A., Knight, J.C., Russell, P.S.J., 1997. Endlessly Single-mode Photonic Crystal Fiber. Optics Letters, Volume 22(13), pp. 961–963

Bise, R.T., Trevor, D.J., 2005. Sol-gel Derived Microstructured Fiber: Fabrication and Characterization. In: Proceedings of the Optical Fiber Communications Conference (OFC), Anaheim, California, 6 March, USA

Cárdenas-Sevilla, G.A., Finazzi, V., Villatoro, J., Pruneri, V., 2011. Photonic Crystal Fiber Sensor Array based on Modes Overlapping. Optics Express, Volume19(8), pp. 7596–7602

Carvalho, J.P., Lehmann, H., Bartelt, H., Magalhaes, F., Amezcua-Correa, R., Santos, J.L., Van Roosbroeck, J., Araújo, F.M., Ferreira, L.A., Knight, J.C., 2009. Remote System for Detection of Low-levels of Methane based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy. Journal of Sensors, Volume 2009, pp. 1–10

Cordeiro, C., Dos Santos, E.M., Brito Cruz, C.H., de Matos, C.J., Ferreiira, D.S., 2006a. Lateral Access to the Holes of Photonic Crystal Fibers–selective Filling and Sensing Applications. Optics Express, Volume 14(18), pp. 8403–8412

Cordeiro, C., Franco, M.A., Chesini, G., Barretto, E., Lwin, R., Brito Cruz, C.H., Large, M.C., 2006b. Microstructured-core Optical Fibre for Evanescent Sensing Applications. Optics Express, Volume 14(26), pp. 13056–13066

Hu, D.J.J., Lim, J.L., Park, M.K., Kao, L.T.H., Wang, Y., Wei, H.Y., Tong, W., 2012. Photonic Crystal Fiber-based Interferometric Biosensor for Streptavidin and Biotin Detection. IEEE Journal of Selected Topics in Quantum Electronics, Volume 18(4), pp. 1293–1297

Huang, Y., Xu, Y., Yariv, A., 2004. Fabrication of Functional Microstructured Optical Fibers through a Selective-filling Technique. Applied Physics Letters, Volume 85(22), pp. 5182–5184

James, D., Scott, S.M., Ali, Z., O’hare, W.T., 2005. Chemical Sensors for Electronic Nose Systems. MicrochimicaActa, Volume 149(1-2), pp. 1–17

Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M., 1996. All-silica Single-mode Optical Fiber with Photonic Crystal Cladding. Optics Letters, Volume 21(19), pp. 1547–1549

Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H., 2000. Nanotube Molecular Wires as Chemical Sensors. Science, Volume 287(5453), pp. 622–625

Lee, S., Park, J., Jeong, Y., Jung, H., Oh, K., 2009. Guided Wave Analysis of Hollow Optical Fiber for Mode-coupling Device Applications. Journal of Lightwave Technology, Volume 27(22), pp. 4919–4926

McCague, C., Fabian, M., Karimi, M., Bravo, M., Jaroszewicz, L.R., Mergo, P., Sun, T., Grattan, K.T., 2014. Novel Sensor Design using Photonic Crystal Fibres for Monitoring the Onset of Corrosion in Reinforced Concrete

Structures. Journal of Lightwave Technology, Volume 32(5), pp. 891–896

Morshed, M., Arif, M.F.H., Asaduzzaman, S., Ahmed, K., 2015a. Design and Characterization of Photonic Crystal Fiber for Sensing Applications. European Scientific Journal, Volume 11(12), pp. 228–235

Morshed, M., Hasan, M.I., Razzak, S.A., 2015b. Enhancement of the Sensitivity of Gas Sensor based on Microstructure Optical Fiber. Photonic Sensors, Volume 5(4), pp. 312–320

Olyaee, S., Naraghi, A., Ahmadi, V., 2014. High Sensitivity Evanescent-field Gas Sensor based on Modified Photonic Crystal Fiber for Gas Condensate and Air Pollution Monitoring. Optik-International Journal for Light and Electron Optics, Volume 125(1), pp. 596–600

Pinto, A.M., Lopez-Amo, M., 2012. Photonic Crystal Fibers for Sensing Applications. Journal of Sensors, Volume 2012, pp. 1–21

Sellmeier, W., 1871. Zurerklärung der Abnormenfarbenfolgeim Spectrum Einigersubstanzen. Annalen der Physik und Chemie, Volume 219(6), pp. 272–282

Stewart, G., Norris, J., Clark, D.F., Culshaw, B., 1991. Evanescent-wave Chemical Sensors–A Theoretical Evaluation. International Journal of Optoelectronics, Volume 6(3), pp. 227–238

Whitenett, G., Stewart, G., Atherton, K., Culshaw, B., Johnstone, W., 2003. Optical Fibre Instrumentation for Environmental Monitoring Applications. Journal of Optics A: Pure and Applied Optics, Volume 5(5), pp. S140–S145

Wolfbeis, O.S., 2008. Fiber-optic Chemical Sensors and Biosensors. Analytical Chemistry, Volume 80(12), pp. 4269–4283

Xiao, L., Jin, W., Demokan, M., Ho, H., Hoo, Y., Zhao, C., 2005. Fabrication of Selective Injection Microstructured Optical Fibers with a Conventional Fusion Splicer. Optics Express, Volume 13(22), pp. 9014–9022